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Abstract-Numerical solutions are obtained for natural convection heat transfer in an open channel with 
corrugated, isothermal confining walls. The channel is very long so that the fluid temperature approaches 
the wall temperature and the flow can be assumed to be periodically fully developed. The solutions are 
obtained by solving the full elliptic governing equations in a transformed coordinate system which maps 
the channel with corrugated walls onto a channel with flat walls. The periodic, fully developed Nusselt 
number for the corrugated channel is expressed by the relation Nu = CGrPr/(L/W) where Gr, Pr and 
L/W are the Grashof number, the Prandtl number and the aspect ratio, respectively, and C is a parameter 
which is a function of Gr, L/Wand the corrugation angle 0. In the limiting case of tJ = 0” (two flat walls), 

the parameter C approaches a constant value. This value is within 1.6% of the exact analytical result. 

INTRODUCTION 

NATURAL convection heat transfer between parallel 
plates has been studied extensively since the initial 
analysis of Bodoia and Osterle [l] (see [2] for a rep- 
resentative bibliography). However, with the excep- 

tion of a recent paper by Agonafar and Watkins [3], 
who treated natural convection between diverging 
plates, there is no single treatment of natural con- 

vection in open channels with irregular side walls. 
This has motivated the present authors to investigate, 
seemingly for the first time, periodic, fully developed, 
natural convection heat transfer between two cor- 
rugated walls. 

The solution methodology that was developed in 
a previous paper [4] to solve the forced convection 
problem in a corrugated channel was adopted in the 
present investigation. The basis of the method is an 
algebraic coordinate transformation which maps the 
complex domain onto a rectangle. The numerical sol- 
utions were performed for laminar flow and for 
thermal boundary conditions of uniform wall tem- 
perature. The calculations were carried out for a 
number of aspect ratios L/W, for three values of the 
corrugation angle 0, and for a range of Grashof 
numbers Gr. 

FORMULATION 

Description of the problem 

The physical situation to be investigated-through 
numerical solutions of the conservation equations- 

is a corrugated, vertical, open channel as depicted 
schematically in Fig. 1 (a). The geometry of the chan- 
nel is specified by the axial length of one cycle L, the 
horizontal spacing between corrugated walls W and 
the corrugation angle 8. The sharp-edged corrugation 
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corners are approximated by smooth curves to pre- 
vent unrealistic solutions. The half length of the chord 
of this curve is denoted by 1 and is assumed to be a 
small number in the present problem (i.e. I = L/256). 
If the left and the right walls are positioned such that 

the peaks of both lie in the same plane, then the width 
W is a function of (3 and L and can be expressed as 
W = (L/2) tanB. Then the selected values of L/W 

range from l/tan 0 to 4/tan 0. 

The solution domain, with the assumption of a 
periodic, fully developed flow, is confined to a typical 
module shown in Fig. l(b). As is described by 

Patankar [5], the periodic, fully developed flow is 
characterized by a velocity field that repeats itself at 
corresponding axial stations in successive cycles. 
Furthermore, in such a regime, the pressure decreases 
linearly in the downstream direction at corresponding 
periodic locations. Similarly, a periodic, thermally 

(a) (b) 

FIG. 1. (a) Schematic diagram of the corrugated wall channel. 
(b) A periodic module. 
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NOMENCLATURE 

per cycle area 
defined by equation (15) 
specific heat 
acceleration due to gravity 
Grashof number as defined in equation 

(1) 
periodic, fully developed heat transfer 
coefficient 
thermal conductivity of the fluid 

axial length of a cycle 
dimensionless periodic pressure 
periodic pressure 
Prandtl number 
heat transfer rate 
temperature 
dimensionless temperature 
dimensionless velocity components 

velocity components 
horizontal spacing between corrugated 
walls 
dimensionless transverse coordinate, 

XIW 

X transverse coordinate 

Y coordinate along the streamwise 
direction 

Y dimensionless streamwise direction, y/W. 

Greek symbols 

6(Y) width of the solution domain 

/l thermal expansion coefficient 

1 

transformed coordinate, equation (7) 

corrugation angle 

p viscosity 

I: 

kinematic viscosity 
transformed coordinate, equation (7) 

P density 

ti streamfunction 

Y dimensionless streamfunction. 

Subscripts 
W refers to the wall 

Go refers to the free-stream values 

ent refers to entrance 

exit refers to exit. 

developed regime exists for a boundary condition of 
uniform wall temperature. In this case, the cycle- 
averaged heat transfer coefficient does not change 
in successive cycles. 

Attention will now be turned to the conservation 
equations which describe the flow and heat transfer 
characteristics for natural convection heat transfer in 
a corrugated, vertical channel, with the assumption of 
a periodic, fully developed regime. 

The conservation equations 
The governing equations employed here are the 

same as those used in the analysis of natural con- 
vection channel flows. In these equations, the stream- 
wise second derivatives and the pressure variations 
transverse to the streamwise direction are also present. 
Laminar flow is assumed to prevail, and the only fluid 
property variation considered is the density difference 
needed to establish the buoyancy term, for which the 
Boussinesq density-temperature approximation is 
employed. The following dimensionless variables are 

used : 

x=x/w, Y=ylW, 

u = ul(vl W), v = v/(v/ W) 

P = p’lp(v/WS, T= (t-t,)l(t,-tt,), 

Gr =g/3W’(t,-t,)/v’ (1) 

where W is the horizontal spacing between the cor- 
rugated walls, p’ is the pressure difference between the 
local values within the duct and the ambient values at 
the same elevation. Then, upon introduction of the 

dimensionless variables, the governing equations have 
the following forms : 

(2) 

Ug+ Vg= -Fy+g+g+GrT (3) 

With the assumption of a fully developed velocity 
and temperature, the velocity behaves in a periodic 
manner from module to module, and the non- 
dimensional temperature T becomes 1. Then, equa- 
tions (2) and (3) become 

(5) 

Liz-k V&= -Ey+$$+$+Gr. (6) 

From the examination of the governing equations (5) 
and (6), it can be seen that there is only one parameter 
whose value has to be specified prior to the initiation 
of the numerical solutions. This is the Grashof 
number, Cr. The selected values for Gr are 100, 1000, 
10000 and 100 000. Aside from Gr, there are two 
dimensionless geometric parameters which have to be 
specified. These are the corrugation angle 8 and the 
aspect ratio L/W. The values of O”, 15”, 30”, and 45” 
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are assigned for 8 and the values of L/W range from 
l/tan ~9 to 4/tan 0. 

Analytical and numerical methods 
A simple algebraic coordinate transformation is 

introduced which maps the physical domain onto a 
rectangle. Specifically, the x, y coordinates are trans- 
formed to q and 5 coordinates by the relation 

? = b-6(Y)llK 5 = Y/W (7) 

such that r~ = 0 and 1 at all points on the left and the 
right walls, respectively. In terms of the new coor- 
dinates, the solution domain is defined by 0 < q < 1, 
and 0 < 5 < L/W. 

The exact analytical expressions for 6(Y) and its 
derivatives, and also the transformed equations and 
their discretization and solutions are documented in 
an earlier paper [4]. The discretized procedure of the 
transformed equations is based on the power-law 
scheme of Patankar [6], and the discretized equations 
are computed by using a line-by-line method. The 
pressure is computed by adopting the SIMPLE algor- 
ithm of Patankar [6]. 

The computations were performed with (18 x 34) 
grid points. The 18 grid points utilized in the rl direc- 
tion, were distributed in a nonuniform manner with 
high concentration of grids close to the walls. Sup- 
plementary runs were performed with (12 x 22) and 
(26 x 50) grid points to investigate grid size effects for 
the case of e = 30” and L/W = 3.464. The changes in 
the mass flow rates [tiw = jr @u),= ,, dx] between the 
coarse mesh (12 x 22) and the medium mesh (18 x 34) 
were 2.7%, 1.2%, 1.3% and 9.0%, and between the 
medium mesh (18 x 34) and the fine mesh (26 x 50) 
were 0.95%, 2.3%, 0.6% and 11% at Gr = lo’, lo’, 
lo4 and 105, respectively. Thus, the medium mesh 
(18 x 34) was chosen to maintain relatively moderate 
computer cost. 

Nusselt number 
Attention will be directed to obtain an expression 

for the Nusselt number for periodic, fully developed 
flow in a corrugated duct. By definition 

Nu=hW/K (8) 

h = Q/LGtw - tent)1 (9) 

and A,,, is the per-cycle heat transfer area, approxi- 
mately equal to 2L/cos 8, Q is the rate of heat transfer 
from both walls to the fluid per cycle and is given by 

Q = jyuctdx - J(Intwtdx. (10) 

This equation can be re-written by defining stream- 
function as tiw = j pu dx and assuming t,,,t = t, for a 
long pipe to give 

Q = 4tw - temh+w (11) 

substituting equations (11) and (9) into (8), the Nus- 

selt number can be expressed as 

Nu = GwPr( W/A,) (12) 

where ijw is a dimensionless streamfunction defined 
as 

*w = *.#I~. (13) 

Equation (12) can further be expressed as 

Nu = C Gr Pr/(L/ W) (14) 

where 

C = ~wIFr(AwIL)I. (15) 

In the case of 6 = O”, the terms a/a Y, a’ja Y* in equ- 
ation (6) become zero and the momentum equation 
reduces to 

a2vjax2 = - Gr. (16) 

Integrating this equation twice, one obtains V as 

V = (Gr/2)(X-X2). (17) 

Therefore, the streamfunction tjw can be obtained as 

(18) 

and the value of C from equation (15) turns out to be 
l/24. 

RESULTS AND DISCUSSION 

Representative streamline maps obtained from the 
solution for 8 = 30” are presented in Figs. 24. These 
figures are for Ll W = 2.389,3.464 and 6.928, respect- 
ively, and in the Grashof number range from 10’ to 
lo*. As seen from these figures, at low Grashof 
number, there are no separation bubbles at the 
corners. As the Grashof number is increased, sep- 
aration regions are observed. This effect is more pro- 
nounced at low aspect ratio L/W. 

The nondimensional streamfunction is plotted as a 
function of the Grashof number in Fig. 5 with e 
and L/W as curve parameters. An analytical value of 
the nondimensional streamfunction for the limiting 
case of 6 = 0” from equation (18) is also plotted in 
this figure. The nondimensional streamfunction I+$~ 
represents the nondimensional mass flow by its defi- 
nition [equation (13)]. The mass flow increases with 
the Grashof number as is expected, but it is always 
less than that for the limiting case of 0 = 0” (two flat 
walls). This is because the friction loss increases and 
the mass flow decreases with the corrugation angle 6. 
When 0 is 30” and 45”, the mass flow takes a minimum 
value somewhere in the middle range of the parameter 
values of L/W. 

The coefficient C is plotted as a function of the 
Grashof number in Fig. 6 with 6 and L/W as curve 
parameters. Its analytical value for the limiting case 
of 19 = 0” is l/24 and is independent of the Grashof 
number. However, it is a function of the Grashof 
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Gr = lo* lo3 lo4 lo5 

FIG. 2. Streamline plots for 0 = 30” and L/W = 2.389. 

Gr = lo* 103 104 lo5 

FIG. 3. Streamline plots for 0 = 30” and L/W = 3.464. 

Gr = lo* lo3 lo4 lo5 

FIG. 4. Streamline plots for 0 = 30” and L/W = 6.928. 
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FIG. 6. Coefficient C as a function of Grashof number. 

Table 1 

Gr *w 

Error 
W) 

Error 
C W) 

100 8.4625 1.6 0.042313 1.6 
1000 84.625 1.6 0.042313 1.6 

10000 843.86 1.3 0.042193 1.3 
100000 8457.2 1.5 0.042286 1.5 

number and the geometry of the duct for a corrugated 
channel. This coefficient is always less than 0.04167 
and decreases with the Grashof number and increases 
with the duct angle 8. It takes a minimum value some- 
where in the middle range of the parameter value 
Ll W, for the cases of 6’ = 30” and 45”. 

Finally supplementary runs are performed with 
(18 x 34) grid points to compare $W and C with the 
analytical values for the case 0 = O”, as given by Table 
1. The values agree to within 1.6%. 

The periodic, fully developed results are obtained 
for natural convection heat transfer in an open chan- 
nel with corrugated confining walls. The solutions 
were obtained by finite-difference technique and via 
utilization of a coordinate transformation meth- 
odology. The periodic, fully developed Nusselt num- 
ber was expressed in terms of Grashof number Gr, 
Prandtl number Pr, aspect ratio L/W and a parameter 
which is a function of Gr, Ll W and 9. The results 
agreed satisfactorily with analytical values for the case 
of B = 0”. 
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CONVECTION NATURELLE PERIODIQUE, ETABLIE DANS UN CANAL 
AVEC DES PAROIS CORRUGUEES 

R&sum-n obtient des solutions numeriques pour la convection thermique naturelle dans un canal avec 
des parois corruguees, isothermes. Le canal est trts long de telle facon que la temperature du fluide approche 
la temperature de la paroi et que l’tcoulement puisse itre suppose periodique et itabli. Les solutions sont 
obtenues en resolvant les equations elliptiques du probleme dans un systtme de coordonnees transform&es 
qui reprtsente le canal avec corrugations comme un canal a parois planes. Le nombre de Nusselt periodique 
pleinement Btabli pour le canal corrugue est exprime par la relation Nu = CGr Pr/(L/ W) oti Gr, Pr et L/W 
sont les nombres de Grashof et de Prandtl et le rapport de forme et oti C est un paramttre fonction de Gr, 
L/Wet de l’angle de corrugation 0. Dans le cas limite f3 = 0” (deux parois planes), le parametre C approche 

une valeur constante. Cette valeur est &gale B 1,6% prks A la solution analytique exacte. 

PERIODISCHE, VOLLENTWICKELTE, NATURLICHE KONVEKTION IN EINEM KANAL 
MIT GEWELLTEN W#NDEN 

Zusammenfassung-Es wurden numerische Liisungen fiir den Wgrmeiibergang bei natilrlicher Konvektion 
in einem offenen Kanal mit isothermen, gewellten Wanden ermittelt. Da der Kanal sehr lang ist, erreicht 
die Fluidtemperatur annahernd die Wandtemperatur. Daher kann angenommen werden, dag es sich urn 
eine neriodische, voll entwickelte Striimung handelt. Nach einer Koordinatentransformation wurde das 
volls&dige elliptische Gleichungssystem gel&t; dabei wurde der Kanal mit den gewellten Wlnden auf 
einen Kanal mit flachen W&den abeebildet. Die oeriodische, voll entwickelte Nusselt-Zahl fiir den 
gewellten Kanal wird durch die Beziehulg NU = C Gr >r/(L/w) korreliert, wobei L/W das Langenverhaltnis 
und C einen Parameter, der eine Funktion von Gr, L/W und vom Wellungswinkel 8 ist, darstellt. Im 
Grenzfall fur 0 = 0” (2 ebene Wande) nlhert sich der Parameter C einem konstanten Wert. Dieser Wert 

hat eine Abweichung von weniger als 1,6% von der exakten analytischen Losung. 

IIEPMOflWIECKA5I, HOJIHOCTbIO PA3BkITAII ECTECTBEHHAR KOHBEKqMR B 
KAHAJ-IE C I-O@PIIPOBAHHbIMM OF’PAHM~EHHbIMM CTEHKAMA 

AHHOTUiIII-nonyYeHb1 WCJleHHbIe pG%leHAK~R Tennoo6rdeHaeCTecTBeHHOii KOHBeKqHeii B OTKpbITOM 

KaHaJIe C rOt$pHpOBaHHbIMH, A30TepMH'ECKHMB OrPaHHYeHHblMW CTeHKaMH. KaHan HMeeT 6onbruyro 

,iuniHy, TaKAM o6pa3oM TeMnepaTypa XHLIKOCTA npki6namaeTcn K TeMnepaType CTeHKH A TeSeHIle 

MOXCT C’IBTaTbCI nep&%OnHVeCKA IIOJIHOCTbH) pa3BllTbIM. PeUeHltK nOJIy'SeHb1 C IIOMOUbK) IIOJIHOi 

CllCTeMbl OnpeneJ75WWHX YpaBHeHHfi 3JIJlAnTAYeCKO~O TUna B TpaHC@OpMHpOBaHHOfi CWCTeMe KOOPLW- 

HaT, KOTOpaK oTO6paxaeT KaHaJ, C rO+pHpOBaHHbIMK CTeHKaMH Ha 06JIaCTb C WIOCKHMH CT’ZHKBMII. 

&,C,IO HyCCeJIbTa DIR IlepHO~kWeCKOI-0 ITOnHOCTbIO pa3BHTOTO TeWHBIl B rO@pHpOBaHHOM KaHane 

BbIpaXeHO 3aBHCAMOCTblO Nu = CGrPr/(L/W), I’lle Gr, Pr B L/i+-WCJU rpaCrOf.$a, npaHATJlK A OTHO- 

"IeHRe NIAHbl K BUCOTC, COOTBeTCTBeHHO, a C--napaMeTp, XB,IKloWlfiCX @YHKUHCii Gr, L/w l4 yr,Ia 

ro+pspoaaaea 8. B npenenbnoM cny‘lae, Korna 0 = 0” (ABe nnocxwe cremoi), napaMeTp C np~6ne- 

*aeTca K noc~on~~oh4y 3HaSeHmo. 3To 3HaYeHAe 0TnngaeTca Ha 1,6% 0T ToYHoro aHankiTHgecKor0 

pe3ynbTaTa. 


