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Abstract—Numerical solutions are obtained for natural convection heat transfer in an open channel with
corrugated, isothermal confining walls. The channel is very long so that the fluid temperature approaches
the wall temperature and the flow can be assumed to be periodically fully developed. The solutions are
obtained by solving the full elliptic governing equations in a transformed coordinate system which maps
the channel with corrugated walls onto a channel with flat walls. The periodic, fully developed Nusselt
number for the corrugated channel is expressed by the relation Nu = C Gr Pr/(L/W) where Gr, Pr and
L/W are the Grashof number, the Prandtl number and the aspect ratio, respectively, and C is a parameter
which is a function of Gr, L/W and the corrugation angle 6. In the limiting case of 8 = 0° (two flat walls),
the parameter C approaches a constant value. This value is within 1.6% of the exact analytical result.
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INTRODUCTION

NATURAL convection heat transfer between parallel
plates has been studied extensively since the initial
analysis of Bodoia and Osterle [1] (see [2] for a rep-
resentative bibliography). However, with the excep-
tion of a recent paper by Agonafar and Watkins [3],
who treated natural convection between diverging
plates, there is no single treatment of natural con-
vection in open channels with irregular side walls.
This has motivated the present authors to investigate,
seemingly for the first time, periodic, fully developed,
natural convection heat transfer between two cor-
rugated walls.

The solution methodology that was developed in
a previous paper [4] to solve the forced convection
problem in a corrugated channel was adopted in the
present investigation. The basis of the method is an
algebraic coordinate transformation which maps the
complex domain onto a rectangle. The numerical sol-
utions were performed for laminar flow and for
thermal boundary conditions of uniform wall tem-
perature. The calculations were carried out for a
number of aspect ratios L/W, for three values of the
corrugation angle 6, and for a range of Grashof
numbers Gr.

FORMULATION

Description of the problem

The physical situation to be investigated—through
numerical solutions of the conservation equations—
is a corrugated, vertical, open channel as depicted
schematically in Fig. 1(a). The geometry of the chan-
nel is specified by the axial length of one cycle L, the
horizontal spacing between corrugated walls W and
the corrugation angle 6. The sharp-edged corrugation
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corners are approximated by smooth curves to pre-
vent unrealistic solutions. The half length of the chord
of this curve is denoted by / and is assumed to be a
small number in the present problem (i.e. I = L/256).
If the left and the right walls are positioned such that
the peaks of both lie in the same plane, then the width
W is a function of § and L and can be expressed as
W = (L/2)tan 6. Then the selected values of L/W
range from 1/tan 8 to 4/tan6.

The solution domain, with the assumption of a
periodic, fully developed flow, is confined to a typical
module shown in Fig. 1(b). As is described by
Patankar [5], the periodic, fully developed flow is
characterized by a velocity field that repeats itself at
corresponding axial stations in successive cycles.
Furthermore, in such a regime, the pressure decreases
linearly in the downstream direction at corresponding
periodic locations. Similarly, a periodic, thermally

Gravity

(a) (b)

Fi1G. 1. (a) Schematic diagram of the corrugated wall channel.
(b) A periodic module.
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NOMENCLATURE
A,  percycle area x transverse coordinate
C defined by equation (15) y coordinate along the streamwise
¢ specific heat direction
g acceleration due to gravity Y dimensionless streamwise direction, y/W.
Gr  Grashof number as defined in equation
¢)) Greek symbols
h periodic, fully developed heat transfer 6(y) width of the solution domain
coefficient B thermal expansion coefficient
K thermal conductivity of the fluid n transformed coordinate, equation (7)
L axial length of a cycle 0 corrugation angle
P dimensionless periodic pressure u viscosity
4 periodic pressure v kinematic viscosity
Pr Prandtl number 14 transformed coordinate, equation (7)
Q heat transfer rate P density
t temperature v streamfunction
T dimensionless temperature b 4 dimensionless streamfunction.
U,V dimensionless velocity components
u,v  velocity components Subscripts
W  horizontal spacing between corrugated w refers to the wall
walls o refers to the free-stream values
X dimensionless transverse coordinate, ent  refers to entrance
x/W exit refers to exit.

developed regime exists for a boundary condition of
uniform wall temperature. In this case, the cycle-
averaged heat transfer coefficient does not change
in successive cycles.

Attention will now be turned to the conservation
equations which describe the flow and heat transfer
characteristics for natural convection heat transfer in
a corrugated, vertical channel, with the assumption of
a periodic, fully developed regime.

The conservation equations

The governing equations employed here are the
same as those used in the analysis of natural con-
vection channel flows. In these equations, the stream-
wise second derivatives and the pressure variations
transverse to the streamwise direction are also present.
Laminar flow is assumed to prevail, and the only fluid
property variation considered is the density difference
needed to establish the buoyancy term, for which the
Boussinesq density—temperature approximation is
employed. The following dimensionless variables are
used:

X =x/W, Y = y/W,

U=u/(/W), V=v/(v/W)

P =p,/p(V/W)2, T= (t—too)/(tw_tm)a

Gr =gﬁW3(tw_tao)/v2 (1)

where W is the horizontal spacing between the cor-
rugated walls, p’ is the pressure difference between the
local values within the duct and the ambient values at
the same elevation. Then, upon introduction of the

dimensionless variables, the governing equations have
the following forms:
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With the assumption of a fully developed velocity
and temperature, the velocity behaves in a periodic
manner from module to module, and the non-
dimensional temperature 7 becomes 1. Then, equa-
tions (2) and (3) become
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From the examination of the governing equations (5)
and (6), it can be seen that there is only one parameter
whose value has to be specified prior to the initiation
of the numerical solutions. This is the Grashof
number, Gr. The selected values for Gr are 100, 1000,
10000 and 100000. Aside from Gr, there are two
dimensionless geometric parameters which have to be
specified. These are the corrugation angle 6 and the
aspect ratio L/W. The values of 0°, 15°, 30°, and 45°
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are assigned for § and the values of L/W range from
1/tan 6 to 4/tan 6.

Analytical and numerical methods

A simple algebraic coordinate transformation is
introduced which maps the physical domain onto a
rectangle. Specifically, the x, y coordinates are trans-
formed to 1 and & coordinates by the relation

n=[x=0W, {=yWw M

such that # = 0 and 1 at all points on the left and the
right walls, respectively. In terms of the new coor-
dinates, the solution domain is defined by 0 < 5 < 1,
and 0 < &< L/W.

The exact analytical expressions for §(Y) and its
derivatives, and also the transformed equations and
their discretization and solutions are documented in
an carlier paper [4]. The discretized procedure of the
transformed equations is based on the power-law
scheme of Patankar [6], and the discretized equations
are computed by using a line-by-line method. The
pressure is computed by adopting the SIMPLE algor-
ithm of Patankar [6].

The computations were performed with (18 x 34)
grid points. The 18 grid points utilized in the 5 direc-
tion, were distributed in a nonuniform manner with
high concentration of grids close to the walls. Sup-
plementary runs were performed with (12 x22) and
(26 x 50) grid points to investigate grid size effects for
the case of 0 = 30° and L/W = 3.464. The changes in
the mass flow rates [, = [’ (pu), ., dx] between the
coarse mesh (12 x 22) and the medium mesh (18 x 34)
were 2.7%, 1.2%, 1.3% and 9.0%, and between the
medium mesh (18 x 34) and the fine mesh (26 x 50)
were 0.95%, 2.3%, 0.6% and 11% at Gr = 10%, 10°,
10* and 10°, respectively. Thus, the medium mesh
(18 x 34) was chosen to maintain relatively moderate
computer cost.

Nusselt number

Attention will be directed to obtain an expression
for the Nusselt number for periodic, fully developed
flow in a corrugated duct. By definition

Nu=hW/K (3)
h = Q/[Aw(tw - tcnl)] (9)

and A, is the per-cycle heat transfer area, approxi-
mately equal to 2L/cos 8, Q is the rate of heat transfer
from both walls to the fluid per cycle and is given by

0= puctdx —j puctdx. (10)
exit ent

This equation can be re-written by defining stream-
function as ¢, = | pudx and assuming 1, = ¢, for a
long pipe to give

Q = c(tw_tem)'//w (11)
substituting equations (11) and (9) into (8), the Nus-
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selt number can be expressed as
Nu=y,Pr(W/A,) (12)

where ¥, is a dimensionless streamfunction defined
as

Yo = Yu/p. (13)
Equation (12) can further be expressed as
Nu = CGrPr/(L/W) (14)
where
C = . /[Gr(4./D)]. 15)

In the case of @ = 0°, the terms 8/8Y, 6°/0Y? in equ-
ation (6) become zero and the momentum equation
reduces to

0*V/0X* = —Gr.
Integrating this equation twice, one obtains V as

V = (Gr/2)(X — X?).

(16)

a7

Therefore, the streamfunction i, can be obtained as

1
V. =f VdX = (1/12) Gr (18)
0
and the value of C from equation (15) turns out to be
1/24.

RESULTS AND DISCUSSION

Representative streamline maps obtained from the
solution for § = 30° are presented in Figs. 2-4. These
figures are for L/W = 2.389, 3.464 and 6.928, respect-
ively, and in the Grashof number range from 10? to
10°. As seen from these figures, at low Grashof
number, there are no separation bubbles at the
corners. As the Grashof number is increased, sep-
aration regions are observed. This effect is more pro-
nounced at low aspect ratio L/W.

The nondimensional streamfunction is plotted as a
function of the Grashof number in Fig. 5 with 0
and L/W as curve parameters. An analytical value of
the nondimensional streamfunction for the limiting
case of § = 0° from equation (18) is also plotted in
this figure. The nondimensional streamfunction
represents the nondimensional mass flow by its defi-
nition [equation (13)]. The mass flow increases with
the Grashof number as is expected, but it is always
less than that for the limiting case of 8 = 0° (two flat
walls). This is because the friction loss increases and
the mass flow decreases with the corrugation angle 8.
When 6 is 30° and 45°, the mass flow takes a minimum
value somewhere in the middle range of the parameter
values of L/W.

The coefficient C is plotted as a function of the
Grashof number in Fig. 6 with 6 and L/W as curve
parameters. Its analytical value for the limiting case
of 8 = 0° is 1/24 and is independent of the Grashof
number. However, it is a function of the Grashof
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Gr = 10% 103 104 10°
F1G. 2. Streamline plots for 8 = 30° and L/W = 2.389.
Gr = 10° 108 104 10

F1G. 3. Streamline plots for § = 30° and L/ W = 3.464.

F1G. 4. Streamline plots for = 30° and L/W = 6.928.
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FIG. 5. Nondimensional streamfunction as a function of
Grashof number.
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FI1G. 6. Coefficient C as a function of Grashof number.
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Table 1

Error Error
Gr Y (%) c (%)
100 8.4625 1.6 0.042313 1.6
1000 84.625 1.6 0.042313 1.6
10000 843.86 1.3 0.042193 1.3
100000 8457.2 1.5 0.042286 1.5

number and the geometry of the duct for a corrugated
channel, This coefficient is always less than 0.04167
and decreases with the Grashof number and increases
with the duct angle . It takes a minimum value some-
where in the middle range of the parameter value
L/W, for the cases of § = 30° and 45°.

Finally supplementary runs are performed with
(18 x 34) grid points to compare ¥, and C with the
analytical values for the case 6 = 0°, as given by Table
1. The values agree to within 1.6%.

CONCLUDING REMARKS

The periodic, fully developed results are obtained
for natural convection heat transfer in an open chan-
nel with corrugated confining walls. The solutions
were obtained by finite-difference technique and via
utilization of a coordinate transformation meth-
odology. The periodic, fully developed Nusselt num-
ber was expressed in terms of Grashof number Gr,
Prandtl number Pr, aspect ratio L/W and a parameter
which is a function of Gr, L/W and 8. The results
agreed satisfactorily with analytical values for the case
of § =0°.
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CONVECTION NATURELLE PERIODIQUE, ETABLIE DANS UN CANAL
AVEC DES PAROIS CORRUGUEES

Résumé—On obtient des solutions numériques pour la convection thermique naturelle dans un canal avec
des parois corruguées, isothermes. Le canal est trés long de telle fagon que la température du fluide approche
la température de la paroi et que I’écoulement puisse étre supposé périodique et établi. Les solutions sont
obtenues en résolvant les équations elliptiques du probléme dans un systéme de coordonnées transformées
qui représente le canal avec corrugations comme un canal a parois planes. Le nombre de Nusselt périodique
pleinement établi pour le canal corrugué est exprimé par la relation Nu = C Gr Pr/(L/W) ou Gr, Pret L/W
sont les nombres de Grashof et de Prandtl et le rapport de forme et ou C est un paramétre fonction de Gr,
L/W et de I'angle de corrugation 6. Dans le cas limite § = 0° (deux parois planes), le paramétre C approche
une valeur constante. Cette valeur est égale a 1,6% prés a la solution analytique exacte.

PERIODISCHE, VOLLENTWICKELTE, NATURLICHE KONVEKTION IN EINEM KANAL
MIT GEWELLTEN WANDEN

Zusammenfassung—Es wurden numerische Losungen fiir den Wirmetibergang bei natiirlicher Konvektion
in einem offenen Kanal mit isothermen, gewellten Winden ermittelt. Da der Kanal sehr lang ist, erreicht
die Fluidtemperatur anndhernd die Wandtemperatur. Daher kann angenommen werden, daB es sich um
eine periodische, voll entwickelte Strémung handelt. Nach einer Koordinatentransformation wurde das
volistindige elliptische Gleichungssystem geldst; dabei wurde der Kanal mit den gewellten Winden auf
einen Kanal mit flachen Winden abgebildet. Die periodische, voll entwickelte Nusselt-Zahl fiir den
gewellten Kanal wird durch die Beziehung Nu = C Gr Pr/(L{W) korreliert, wobei L/W das Langenverhiltnis
und C einen Parameter, der eine Funktion von Gr, L/W und vom Wellungswinkel 8 ist, darstellt. Im
Grenzfall fiir # = 0° (2 ebene Winde) nihert sich der Parameter C einem konstanten Wert. Dieser Wert
hat eine Abweichung von weniger als 1,6% von der exakten analytischen Losung.

NMEPUOIUYECKAS, MOJHOCTBIO PASBBUTAA ECTECTBEHHAS KOHBEKUHUS B
KAHAJIE C TO®PUPOBAHHBIMH OFPAHUYEHHBIMHW CTEHKAMHA

Annorauus—I1onyyeHsl YHCEHHbIE PEILIeHHs U TEMIOOOMEHa €CTECTBEHHOM KOHBEKLIHEHR B OTKPLITOM
KaHajle ¢ roGpHPOBAHHBIME, H3OTEPMHYECKHMA OTpAaHHYEHHBbIMHM cTeHKamu. Kanan mmeer Goaburyio
IUTHHY, TakuM OOpa3oM TeMIepaTypa XMAKOCTH NMPHOIHKAETCA K TEMMEpPaType CTEHKH H TEYCHHE
MOXET CHYMTATLCA IEPUOJAMYECKM MOJHOCTbIO Pa3BUTHIM. PelieHHs noiaydyeHbl ¢ MOMOIIBIO MOJHON
CHCTEMBI OMpEAEIAIOILMX YPABHEHAH 3JUTHITHYECKOTO THIA B TpaHCHOPMHPOBAHHON CHCTEME KOOPAH-
HaT, KoTopas oTobpaxaeT KaHan ¢ roGpHPOBAHHLIMH CTEHKaMH Ha 00JIaCcTh C IUIOCKHMH CTE€HKaMH.
Yncno HyccenbTa Wis MEPHOAMYECKOTO MOJHOCTBIO PAa3BHTOrO TeYeHMs B roGpHpOBAHHOM KaHalie
BBIPAXKEHO 3aBUCHMOCTbIO Nu = CGrPr/{(L/W), rae Gr, Pr u L/W—uncna I'pacroda, Ilpauarns u oTso-
lIeHHe [JIMHBI K BBICOTE, COOTBETCTBEHHO, a C—napaMeTp, spisiowmiics ¢pyukuueit Gr, L/W n yrina
roppuposanus 0. B npenensHoM ciydae, korna 8 = 0° (npe miockue creHkm), napamerp C npubau-
KAETCA K MOCTOSHHOMY 3HAYEHHIO. DTO 3HaYeHHe oTinyaercsd Ha 1,6% OT TOYHOrO aHAIHTHYECKOro
pe3yibTaTa.



